Arterial pulse attenuation prediction using the decaying rate of a pressure wave in a viscoelastic material model
نویسندگان
چکیده
The present study examines the possibility of attenuating blood pulses by means of introducing prosthetic viscoelastic materials able to absorb energy and damp such pulses. Vascular prostheses made of polymeric materials modify the mechanical properties of blood vessels. The effect of these materials on the blood pulse propagation remains to be fully understood. Several materials for medical applications, such as medical polydimethylsiloxane or polytetrafluoroethylene, show viscoelastic behavior, modifying the original vessel stiffness and affecting the propagation of blood pulses. This study focuses on the propagation of pressure waves along a pipe with viscoelastic materials using the Maxwell and the Zener models. An expression of exponential decay has been obtained for the Maxwell material model and also for low viscous coefficient values in the Zener model. For relatively high values of the viscous term in the Zener model, the steepest part of the pulse can be damped quickly, leaving a smooth, slowly decaying wave. These mathematical models are critical to tailor those materials used in cardiovascular implants to the mechanical environment they are confronted with to repair or improve blood vessel function.
منابع مشابه
Rain Attenuation Prediction at Ku Band Using Satellite Signal Beacon Measurement in Iran
In this paper satellite wave propagation at Ku and Ka band is considered. The design and simulation of a typical satellite beacon receiver at Ka band is designed and simulated for the future works. Also rain attenuation prediction at Ku band using satellite signal beacon measurement and simulations for Iran Telecommunication Research Center (ITRC) are presented. The measurement setup consists o...
متن کاملOne-dimensional model for propagation of a pressure wave in a model of the human arterial network: comparison of theoretical and experimental results.
Pulse wave evaluation is an effective method for arteriosclerosis screening. In a previous study, we verified that pulse waveforms change markedly due to arterial stiffness. However, a pulse wave consists of two components, the incident wave and multireflected waves. Clarification of the complicated propagation of these waves is necessary to gain an understanding of the nature of pulse waves in...
متن کاملPressure Wave Propagation in Liquid-Filled Tubes of Viscoelastic Material
The propagation of small-amplitude waves in a thick-walled long viscoelastic tube of variable cross-section, filled with a viscous incompressible fluid, is considered with account for wave reflection at the tube end in application to arterial pulse wave propagation. A solution is obtained in the form of expansions in a small parameter. The effect of the coefficient of wave reflection at the tub...
متن کاملEvaluating the effect of stenosis increase and pulsatile blood pressure on effective stress distribution in viscoelastic finite element model based on carotid artery ultrasound images
The aim of this study is to evaluate the changes of effective stress distribution in plaque by progressing to the stenosis throat and to assess the pulsatile pulse pressure effect on effective stress of a viscoelastic finite-element model of carotid arteries having less and more than 50% stenosis. In-vivo geometries of the arteries were reconstructed using consecutive transverse ultrasound imag...
متن کاملThe effects of foot massage on physiologic indicators in critically ill patients
The perpuse of this research is to determine the effect of foot massage on physiologic indicators including pulse, respiration and mean arterial pressure. The hypothesis of this research is that foot massage decreases the patient´s heart rate, respiratory rate and mean arterial pressure. This research is a quasiexperimental study and a self-control clinical trial with repeated measures in witch...
متن کامل